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In paper [l] the self-similar problem of axlsymmetric near-sonic flow far 
from an arbitrary body was solved by a numerical method. The authors ad- 
vanced the hypothesis that this solution corresponds to an exponent of self- 
similitude of 4/,. In the present work a particular family of self-similar 
solutions Is found algebraically In the e, t plane for both two-dimensional 
and axlsymmetrlc flow, and the corresponding exponent of self-similitude Is 
determined. The given family Includes the solution of Guderley and Yoshl- 
hara. It is shown theoretically that the exponent of self-similitude for 
that solution Is equal to '/,. 

1, The approximate equation for the perturbation velocity potential + 

for two-dimensional and axisymmetrlc near-sonic flow can be written in the 

form 
-(X+1)@&+@~+W'$=O (@,,=U,(Dv=") (1.1) 

Here u and u are the components of the perturbation velocity for a 

basic sonic stream In a rectangular coordinate system, and UI = 0 for two- 

dimensional flow and UI = 1 for axlsymmetric flow. 

We consider self-similar solutions of Equation (1.1) of the form 

0 = p-2 f (5) ( 2 

c= (x+lf’ay* 1 (1.2) 

Here n Is the exponent of self-similitude. For the determination of 

f(C) we obtain the ordinary differential equation 

f” (?l?$S - f’) - n (5n - 5 + Co) ?J’ + (3n - 2) (3n - 3 + 0) f = O(1.3) 

We introduce Guderley’s variables 

S = ff-s, t = f’~-2 (1.4) 

which lead to an equation of first order 
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as 
dt= 

(n2 -t) (t - 3s) 
2t2 + &t - B,s 

B1=3n2-h+no 

B,=(3n-2)(3n--+a) (1.5) 

In the finite part of the plane Equation (1.5) has the three singular 

points C 11 

A (s = 0, t = O), n3(5n-55+) 
C((3n-2)(3n-3+w)’ 

If an l.ntegral curve t 
is found from Formula [l] 

The velocity components 

= t(a) of Equation (1.5) Is determined, then C 

In cg = & 
s (1.6) 

l4 and u are found from Formulas 

u = 0, = (x + I)“” y2+2 f’ (5) = (x + q+ y2n-2i2t 

v = @‘y = p-2 I(312 - 2) f - nCf’] = y37+35* [(3n - 2) s - nt] 
(4.7) 

2. We shall seek a particular family of solutions of the equation of the 

form 
s = a + bt *v/1 + ct (d + gt) (2.1) 

Analyzing the results of [2] and [3], It Is easy to see that for n = 2 

there exist solutions of the form (2.1) In both the two-dimensional and 

axisymmetrlc cases, which represent analytic flow In a Lava1 nozzle. 

We substitute the function (2.1) In Equation (1.5). Equating coefficients 

of like powers of t , we obtain the following system of algebraic equations: 

- Bzacd - 2B2ag - 2Bzbd $ 6n2 d = 0 (2.2) 

cd(B1 + 6n2) + (2Bl + 6na)g - 3B2 bed - IB2 bg -t- 3Bzacg - 6d = 0 (2.3) 

(3B1 + 6n2)cg - 5Bzbcg - 2g - 4cd = 0 (24 
- 3Bzcg2 - 2b + 2 = 0 (2.5) 

(2Bl + 6n2) b- 4Bzcgd - 2Bzb2 - 2Bzg2 - 2n2 - 6a = 0 (2.6) 

- 2Bzab - B2cd2 - 2Bzgd + 6n2a = 0 (2.7) 

Equations (2.2) to (2.7) are a system of six algebraic equations for the 

determination of the unknowns a, b, o, d, Q and n . In the general case 

they are easily transformed to a system of three equations for three unknowns. 

Using (2.6) we determine a 

a =b($B,f n2)-_B2cgd -$B,b2 -$ B2g2 - +n2 (2.8) 

We express b through (2.5) , 

b = 1 -+B2cg2 (2.9) 

From Equation (2.4) with the use of (2.9) we determine d 
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Substituting these values of o, b and 

-+ c-l] + + Bt2 cg3 (2.20) 

d into Equations (2.2), (2.3) 
and (2.7), we obtain a system of three equations for determining ‘o, g and 
n . However this system has a very unwieldy form and its immediate solution 

is difficult. 

3. We consider first. a solution of the form (2.1) passing through the 

singular point A , which is node of the integral curves of Equation (1.5) 

with angle of Inclination ds 7L 
x- = 3/1---z 

(3.11 

It is known [l] that the singular point A represents in s, t variables 

the x-axis of the physical plane. Condition (3.1) on solutions of the’type 

(2.1) indicates an important property of symmetry of the flow with respect 

to the x-axis In the case ui = 0 andabsence from that axis of singularities 

of source type in the case w=l. 

For such solutions it is possible to write the two additional conditions 

d=--a, b =12 ‘jj++g (3.21 

Substituting (3.2) lntc Equations (2.2) and (2.7) we obtain a system of 

four equations for the determination of a, o, Q and n whose solution, 

under the conditions that a # 0 and g # 0 , has the form 

g' 
z&w - $2n f ~Vr~On” - 147&G _t 720n - 48n"o + 308n"w - 27%~ .~-- 

12Bz 
60n" - 4n30 - 13fw _i- 31;3 1220 + 6On - 3313 nc!l 

51 _z --------,--y 
la& 

(3.3) 

b ~_: 6n3- h + no) 12112 - 27n -I- 5rlo -+- 1‘1 -- 40 
~---- . 

2& > c :: ----;$jj-q-7----- 

Finally it is possible to obtain an equation for the determination of the 

exponent of self-similitude n . 

In the case of two-dimensional flow (C = 0) we will have 

;$‘[J(),LP - 2#2(,,2: -'- 1()65GEl/l" -' 221_'638/lj + xm1/~4 - 

'l‘.'V~j:~~j,,3 I(Jtj3GS,L2 --- "832OJL i- 3liOO L 0 (3.2) 

We find the roots 
e- U‘G 

rz, -.z :‘, :*z :z It.3 -1 -a ii::‘,lijz_5. 
9+1/i? q -zz - , 

J * 
Illj -..- $ , 8 @ = -x-- 

The roots n, and ne should be discarded; they correspord to solutions 

with Q = 0 , which do not satisfy the basic system (2.2) to (2.7). 



In the case of axisymmetric flow (UJ = l), the equation determining the 

exponent of self-similitude has the form 

-& 1/42n3- 73n2 + 2% (42na- 73~ +28)-252n4+816n3- 993n2+544n - 112=0 (3.6) 

Freeing this irrationality we obtain 

31X2@ - 242676~7 f 776322ne - 135719W + 14172OW - 
-904794n3+345032nZ-771904n+6272=0 

We find the roots 

n1=2, n,=-+, n3 = n4 = $ f n5 = 4 
3 * 

ng=n7=J- 
6 * 

n,+ 

(3.7) 

The roots n6 and ne should be discarded. 

4, Using the values found for n to find the coefficients a, b, o, d 

and g from the relations (3.3) and (3.7), we obtain the following system 

of solutions: 

In the plane case (w = 0) 

12 =z 2, s=+-+$t*v-i+2t(-+++ t), t>_$ (4.1) 

nz-4 
5 ’ 

s = + - 3t f -+ V(1- q3, t-cl (4.2) 

a=5 125 

4 ’ 
sz--- 84 ++t 7fiE1/(1-z “)“* t<$ (4.3) 

-- 
n=-l- 

2 ’ 
,=+ 1/1++(-$++). t>-+ (4.4) 

In the axisymmetric case (LU = 1) 

n = 2, s=+++t*v1+t(--++$t) t>_1 (4.5) 

n=L 
3 ’ 

s=$f pTpFt(-!_++ t), t>-f (4.6) 

n -b A.. 
7 ’ 

s = - $ + 5t f 7 t/p - $ t)3, t<$- (4.7) 

?&,A 
6 ’ ,=-g+;t* gy(l-g ty, t<$ (4.6) 

Thus all solutions of the form (2.1) have been found that pass through 

the singular point A with angle of inclination (3.1). 

Using the other singular points of Equation (1.5) and the known slopes 

of the integral curves at these points, it is possible to obtain the remain&g 

solutions of the form (2.1). 

5. It is noteworthy that the series of solutions obtained above Include 

the following: flow in a plane Lava1 nozzle [5 and 23, solution (4.1); 

flow far from an arbitrary body in a two-dimensional near-sonic flow, first 

considered by Prankl' [4], solution (4.2), In fact, the assignment of a 

definite value of n and the condition that In the vicinity of the point A 

In the 8t plane the integral curve has an expansion of the form 
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s = 3& t + Ad2 +... 

uniquely determines these solutions. 

Solution (4.7) satisfies all the conditions formulated in [l], and deter- 

mines the flow far from a body in axisymmetric near-sonic flow. Thus the 

exponent of self-similitude corresponding to that flow Is equal to "/.,. 

6. In order to find the potential pi(~,y) of this flow, we use Equation 

(1.6). Substituting the value of e from Formula (4.7) into (1.6) we obtain 

We set 

-- 

1nCc = 
s 

(5 - 7 Jfi -Qt)dt 

“sJ3 - 14t - aeJs 1/(1 - sja tj3 

$=I-.3 
zt (6.2) 

(6.1) 

After integration we find to within a scale constant 

5 = _ (1 - z)-"+ (6.3) 

Substituting (6.3) into the first of Equations (1.4) we will have 

f = - "fs (1 - z)%"% [2- 309 + 28231 (6.4) 

Equations (6.3) and (6.4) parametrically determine the function _f = f(6). 

We now find the sonic line. Along it, according to Equation (1.7), t =O. 

From (6.2) we have z = -1. Then according to Equation (6.3) 

5* =+ 

The limiting characteristic corresponds to t = n2 = '"/,,, and from the 

relation (6.3) we find 

cc=&&- 

Behind the limiting characteristic there exists a line on which the velo- 

city is horizontal. For the determination of that line we find from EqUa- 

tion (1.7) 
* = 0 for(3ra-2)s-~nt=O 

For n = 4/7 this gives s = - 2t . Substituting this value of a into 

(4.7) we find, using (6.21, 

223 - 322 + 1 = 0 

This equation has the roots z = 1, corresponding to the negative part 

of the x-axis, and t = -4 . According to (6.3) the latter root gives 

According to (6.2) the point D (t = "/,) corresponds to ,z _ 0, which 

gives 6 = = . Here we reach the positive part of the x-axis. It is evident 
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from (1.7) that u is different from zero. Consequently this part of the 

x-axis is covered with sinks. 

Analogous considerations apply also to the two-dimensional case [61. 
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