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In paper [1] the self-simllar problem of axlsymmetric near-sonic flow far
from an arbitrary body was solved by a numerical method. The authors ad-
vanced the hypothesls that this solution corresponds to an exponent of self-
similitude of ‘/;. In the present work a particular family of self-similar
solutions 1is found algebraically in the g, ¢ plane for both two-dimensional
and axisymmetric flow, and the corresponding exponent of self-similitude 1s
determined. The given family includes the solution of Guderley and Yoshi-
hara. It is shown theoretically that the exponent of self-similitude for
that solution 1is equal to */,.

l. The approxlimate equation for the perturbation velocity potential &
for two-dlmenslonal and axisymmetric near-sonic flow can be written in the

Uy
— e+ 1) @xcpm+cpw+w'-yl'=o (@, —u, ®,=v)  (1.1)

form
]

Here uy and v gare the components of the perturbation velocity for a
basic sonlc stream in a rectangular coordinate system, and w = O for two-
dimensional flow and w =1 for axisymmetric flow.

We consider self-similar solutions of Equation (1.1) of the form

D = 2 f (D) <C= m—;) (1.2)

Here n 1s the exponent of self-similitude. For the determination of
f(C) we obtain the ordinary differential equation

P —f)—n@Gn—5+ o) tf + (3r —2) (3n — 3 + o) f = 0(1.3)

We introduce Guderley's variables

s=jte,  t=gr (1.4)

which lead to an equation of first order
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ds _ (n?—1t)(t—3s) (B1=3n2—5n+n(o ) (1.5)

‘dt — 2t | Byt — Bas B;=(3n—2)(3n—3 4 w)

In the finite part of the plane Equation (1.5) has the three singular
polints [1]

_ _ n®(5n — 5 4 ) _3—a 33—
A(s=0,t=0), C(z=F2505.n), D(s=352, =239

If an integral curve t = t(g) of Equation (1.5) is determined, then ¢

is found from Formula [1]
ds
InC{ = SET‘_?’? (16)

The veloclty components y and v are found from Formulas

=0 = (x+ N7y f (L) = (e 1) yeeg .1
v=0, =y [Bn — 2) f — nlf'] = y=3® [(3n — 2) s — nt]

2. We shall seek a particular family of solutions of the equation of the
form — b
s=a-+bt +V1Fct(d+ gt (2.1)

Analyzing the results of [2] and [3], 1t 1s easy to see that for n = 2
there exist solutions of the form (2.1) in both the two-dimensional and
axisymmetric cases, which represent analytic flow in a Laval nozzle.

We substitute the function (2.1) in Equation (1.5). Equating coefficients
of like powers of ¢ , we obtain the following system of algebraic equations:

— Beacd — 2Bgag — 2B2bd + 6n%d = 0 (2.2)

cd(B1 + 6n?) + (2B1 + 6n?)g — 3B, bed — 4Bybg + 3Bsacg — 6d = 0 (2.3)
(3B1 + 6n?)cg — 5Babcg — 2g — 4ed = 0 (2.4)

— 3Bacg® —2b 42 =0 2.5)

(2B1 + 6n?) b— 4Bacgd — 2Bzb? — 2Bag® — 2n? —6a = 0 2.6)

— 2B2ab — Bacd?* — 2B2gd -+ 6n%a = 0 2.7

Equations (2.2) to (2.7) are a system of six algebralc equations for the
determination of the unknowns a, b, ¢, d, g &nd n . In the general case
they are easlly transformed to a system of three equations for three unknowns.

Using (2.6) we determine a
a =b(+B, + n?) — LB, cgd — LB — 5 B2 — tn*  (2.8)

We express b through (2.5)
b = —%Bz cg? (2.9

From Equation (2.4) with the use of (2.9) we determine 4
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d=glgBi+3nt — By — L+ B eg (210)

Substituting these values of g, b and 4 into Equations {2.2), (2.3)
and (2.7), we obtain a system of three eguations for determining o, ¢ and
n . However this system has a very unwleldy form and its immedlate solutlon
is difficult.

3. We consider first a solution of the form {2.1) passing through the
singular point 4 , which 1s node of the integral curves of Equation (1.5)
with angle of inclination ds n (3 1
dt  3n—2 ’

It i1s known [1] that the singular point 4 represents in g, t variables
the x -axls of the physical plane. Condition {3.1) on solutions of the ‘type
{2.1) indicates an important property of symmetry of the flow with pespect
to the x-axls In the case @ = 0 and absence from that axis of singularities
of source type in the case w =1

For such solutions 1t 1s possible to write the two additional conditions
n ca
d = — a, b——m+—2'"—g (32)
Substituting (3.2) 1intc Equations (2.2) and (2.7) we obtain a system of
four equations for the determination of @, ¢, ¢ and n»n whose solution,

under the condlitions that ¢ # O and g # O, has the form

¢ = dver — 12n 4+ V 7200° — 147602 - 7200 — 48n°0 -+ 308n*0 — 27200

128,
60n? ~— 4ndw — 138n2 - M5 2w + 600 — $8/3 ne .
a — n .n ';LB 2 + 3 (3.3)
b3y
bm_&ﬂ—3n+nm 1202 — 27n - 500 - 12 — o
R T R By

Finally it is possible to obtain an equation for the determination of the
exponent of self-similitude n

In the case of two-dimensional flow {u = 0) we will have

j}ﬁ%ﬁﬁémﬁpmnwf—4Mfﬁm—%&ﬁ+3%%~4WW{3%&-%0:0 (3.4)
Freeing this of irrationality we obtaln

A00nE — 2832017 -1- 10656818 — 22263815 - 2823810t —
~999638,.8 . 1065088 — 283200 - 3200 =0 (3.5)
We find the roots
e VT 9- Vi3
8
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The roots n, and ng should be discarded; they correspord to solutions
with g = O , which do not satisfy the basic system (2.2) to (2.7).
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In the case of axlsymmetric flow (w = 1), the equation determining the
exponent of self-similitude has the form

LV E3n3— 73n & 28n (422 — T3n -+ 28) — 2524+ 81603 — 993024 544n —112=0 (3.6)

Freeing this lrrationality we obtain

34752n8 — 24267607 - 77632208 — 13571910 - 1447205n% —

— 90479403 + 34503202 — 71904n 4 6272 =0 (3.7)
We find the roots
4 7

1 4 1
n1=2, ?222—?, n3=n4=7, n5:~§—, n6=n?:“g‘; ﬁsz?

The roots ng and ng should be discarded.

4, Using the values found for n %o find the coefficlents a, b, o, d
and g from the relatlons (3.3) and (3.7), we obtain the following system
of solutions:

In the plane case {(w = 0)

n=2, s:%-»{——i—t_—_{:}/i—l—%(—**;—-{-%t), t>""’;— (4.1)

n=3, s=2—3g D V{1 t<1 (4.2)
5 125 15 25 16 3 25

n=S, el 3, g B T 1< (43)

n=t, s=t+)1+ti(—r+10), 1>—4 (44

In the axisymmetric case {w = 1)
n=2, sz..;.+%zi1/1+'i(--§-+—;-z) > —1 (4.5)

n=d, s=liyiTe(—2+11), t>—L 4
4 28 28 1 3 3 2

Rt =By BTy t< L 4.7
o %3, 3 343 36 ,\3 49

n_—é-, S——ﬁ-f-éstj:ﬁV(i—g—gl), t<§§ (4.8)

Thus all solutions of the form (2.1) have been found that pass through
the singular point A4 with angle of inclination (3.1).

Using the other singular points of Equation (1.5) and the known slopes
of the integral curves at these points, it is possible to obtaln the remalining
solutions of the form (2.1).

5. It is noteworthy that the series of solutions obtained above include
the following: flow in a plane Laval nozzle [5 and 2], solution (4.1};
flow far from an arbitrary body in a two-dimensional near-soniec flow, first
considered by Frankl' [4], solution (%.2), In fact, the assignment of a
definite value of n and the condition that in the viclnity of the point 4
in the st plane the integral curve has an expansion of the form
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_ _n 2
§= 5—5 t -+ Aat® ...

uniquely determines these solutions.
Solution (4.7) satisfies all the conditions formulated in [1], and deter-

mines the flow far from a body in axisymmetric near-sonlc flow. Thus the
exponent of self-similitude corresponding to that flow is equal to 4/, .

6. In order to find the potential &(x,y) of this flow, we use Equation
{1.6). Substituting the value of s from Formula {4.7) into (1.6) we obtain

— (6—7VI=%t)dt
InCt = 8231;3_145_29/3 VI —htp (6.1)

We set
22 =1 -———g«t (6.2)
After integration we find to within a scale constant
L= — (1 —2)rg™" (6.3)
Substituting (6.3} into the first of Equations {1.4) we will have
f=—Y, (4 — 2"z [2— 3022 + 285%] (6.4)

Equations (6.3) and (6.4) parametrically detérmine the function 7 = r(().

We now find the sonic line. Along it, according to Equation (1.7), ¢ = Q.

From (6.2) we have z = —1. Then according to Equation (6.3)
(=t
*_2‘/1
The limiting characteristic corresponds to ¢ =n® = !¢/, , and from the
relation (6.3) we find 7
Ce =g

Behind the limiting characteristic there exlists a line on which the velo-
city is horizontal. For the determination of that line we find from Equa-
tion {1.7)

p =0 for Bn—2)s—nt=0

For n =4/, this gives g = — 2¢t . Substituting this value of s into

(%.7) we find, using (6.2),

228 — 322 4+ 1 =0

This equation has the roots z = 1, corresponding to the negative part

of the x-axis, and gz = —g . According to (6.3) the latter root gives
2
§v=o-—-§;

According to (6.2) the point p (¢ = */;) corresponés to gz = O, which
glves ( = » ., Here we reach the positive part of the x-axis. It is evident
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from {1.7) that v 1s different from zero. Consequently this part of the
x-8xls 1s covered with sinks.

Analogous considerations apply also to the two-dimensional case [6].
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